

Provable Non-Convex Optimization and Algorithm Validation via Submodularity

Yatao Bian ETH Zürich November 20, 2019

Why do we need continuous submodularity?

Motivations and applications

Motivation 1: Prior knowledge for modeling

Continuous DR-submodularity captures "Diminishing Returns (DR)" phenomenon

happiness gained by having some quantity of (water, coke)

 $\boldsymbol{\delta} = \begin{bmatrix} 50 \ ml \ water \\ 50 \ ml \ coke \end{bmatrix}$ $f\left(\boldsymbol{\delta} + \begin{bmatrix} 1 \ ml \\ 1 \ ml \end{bmatrix}\right) - f\left(\begin{bmatrix} 1 \ ml \\ 1 \ ml \end{bmatrix}\right)$ $\geq f\left(\boldsymbol{\delta} + \begin{bmatrix} 100 \ ml \\ 100 \ ml \end{bmatrix}\right) - f\left(\begin{bmatrix} 100 \ ml \\ 100 \ ml \end{bmatrix}\right)$

To model:

- preference
- influence
- satisfaction
- revenue

. . .

marginal gain of happiness by having δ more (water, coke) based on a large context

Motivation 2: A non-convex structure with provable optimization

Quadratic Program (QP):

 $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x} + \mathbf{h}^{\mathrm{T}}\mathbf{x} + c$, **H** is symmetric

$$\nabla^2 f = \mathbf{H}, \ \mathbf{H} = \begin{bmatrix} -1 & -2 \\ -2 & -1 \end{bmatrix}, \ \text{eigenvalues:} \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

Non-convex/non-concave \rightarrow Continuous submodular \bigoplus

It arises in:

Lovasz/Multilinear extensions of submodular set functions [Lovasz '83][Calinescu et al. '07]

> DPP MAP inference [Gillenwater et al. '12] [BLKB '17]

Social network mining [BMBK '17]

Risk-sensitive submodular optimization [Wilder '17]

Robust budget allocation [Staib et al. '17]

Mean field inference for the posterior agreement (PA) distribution [BBK '19] Product recommendation

Amazon baby registries. Left: furniture, right: toys

Revenue maximization

Image summarization

Revenue maximization with continuous assignments [Hartline et al. '08, BMBK '17]

Task: advertise an innovation/product based on a social connection graph
 → max. expected revenue

Given: connection graph

- Nodes: all users (all people on FB)
- Edges: influence strength between users

Viral marketing: give some users a certain amount of free products, to trigger further adoptions

 $\mathbf{x} \in \mathbb{R}^n_+$: free trial time for n users

How to model expected revenue: $f(\mathbf{x})$?

Revenue $f(\mathbf{x})$ satisfies DR property:

How to characterize continuous submodularity?

Definitions and characterizations

Three orders of characterizations [BMBK '17]

coordinate-wise less equal

antitone mapping: $\mathbf{x} \leq \mathbf{y}$ implies $\nabla f(\mathbf{x}) \geq \nabla f(\mathbf{y})$

	Continuous submodular <i>f</i>	Convex $g, \lambda \in [0,1]$
0 th order	$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y})$	$\lambda g(\mathbf{x}) + (1 - \lambda)g(\mathbf{y})$ $\geq g(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$
1 st order	$ abla f(\cdot)$: weak antitone mapping	$g(\mathbf{y}) \ge g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$
2 nd order	$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \le 0, \forall i \neq j$	$\nabla^2 g(\mathbf{x}) \ge 0$ (PSD)

not care	≤ 0	≤ 0	≤ 0
≤ 0	not care	≤ 0	≤ 0
≤ 0	≤ 0	not care	≤ 0
≤ 0	≤ 0	≤ 0	not care

V: coordinate-wise max.

 Λ : coordinate-wise min.

-	
1	
0	
3	

 $\mathbf{x} \wedge \mathbf{y}$

Continuous submodularity: Repulsion among different dimensions

 $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \le 0, \forall i \neq j$

not care	≤ 0	≤ 0	≤ 0
≤ 0	not care	≤ 0	≤ 0
≤ 0	≤ 0	not	≤ 0
		care	

Hessian

Arbitrary behavior along a single coordinate

Often, objectives have some structure along a single coordinate

Submodularity + Concavity along any single coordinate

= Continuous DR-submodularity

A 2-D Softmax extension [Gillenwater et al. '12]

Two classes of continuous submodular functions [BMBK '17]

	Continuous Submodular				Continuous DR-Submodular						
0 th order	$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y})$					$d(\mathbf{x}) + d(\mathbf{y}) \ge d(\mathbf{x} \lor \mathbf{y}) + d(\mathbf{x} \land \mathbf{y})$ & coordinate-wise concave					
1 st order	$ abla f(\cdot)$: weak antitone mapping					$ abla d(\cdot)$: antitone mapping					
2 nd order	$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \le 0, \forall i \neq j$					$\frac{\partial^2 d(\mathbf{x})}{\partial x_i \partial x_j} \le 0, \forall i, j$					
	$\begin{array}{ c c c c } not & \leq 0 & \leq 0 & \leq 0 \\ care & & & \\ \end{array}$				≤ 0	≤ 0	≤ 0	≤ 0			
	≤ 0	not care	≤ 0	≤ 0			≤ 0	≤ 0	≤ 0	≤ 0	
	≤ 0	≤ 0	not care	≤ 0			≤ 0	≤ 0	≤ 0	≤ 0	
$\leq 0 \leq 0 \leq 0$ not care						≤ 0	≤ 0	≤ 0	≤ 0		

How to maximize continuous DR-submodular functions?

Provable algorithms

DR-submodular maximization: Setup & hardness

Hardness & Inapproximability: The above problem is NP-hard. When \mathcal{P} is a unit hypercube ($\mathcal{P}=[0,1]^n$), there is no poly. time $(1/2 + \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$ unless RP=NP.

 $\frac{1}{2}$ -approximation: finding a solution **x** s.t. $f(\mathbf{x}) \ge \frac{1}{2}f(\mathbf{x}^*)$

A summary of our theoretical results

Mathematical characterizations of submodularity over integer & continuous domains [BMBK '17]	0 th order, 1 st order, 2 nd order, antitone gradient etc
$a \leq b \rightarrow f(a) \leq f(b)$ Monotone DR-submodular max. with down-closed convex constraints [BMBK '17]	- Inapproximability: 1 — 1/ <i>e</i> - <mark>Optimal</mark> algorithm: A Frank-Wolfe Variant
Non-monotone DR-submodular max. with box constraints [BBK '19]	 Inapproximability: 1/2 Optimal algorithm: DR-DoubleGreedy
Non-monotone DR-submodular max. with down-closed convex constraints	 Inapproximability: Open problem Best algorithm so far: Shrunken Frank-Wolfe,

[BLKB '17] 1/e guarantee

Non-monotone DR-submodular max. with down-closed convex constraints [BLKB '17]

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe,

1/e guarantee

Local-Global relation [BLKB '17]

 $\max_{\mathbf{x}\in\mathcal{P}}f(\mathbf{x})$

- $-\underline{\mathcal{Q}} \coloneqq \mathcal{P} \cap \{\mathbf{y} \mid \mathbf{y} \lesssim \overline{\mathbf{u}} \mathbf{x}\}$
- Let \mathbf{z} be the a stationary point in \mathcal{Q}

Can be generalized to approximately stationary points

Local-Global relation \rightarrow Two-Phase algorithm

Two-Phase algorithm

- $\mathbf{x} \leftarrow \mathsf{Non-convex} \operatorname{Solver}(\mathcal{P}) // \operatorname{Phase I on} \mathcal{P}$
- $\mathcal{Q} \leftarrow \mathcal{P} \cap \{\mathbf{y} \mid \mathbf{y} \lesssim \overline{\mathbf{u}} \mathbf{x}\}$
- $\mathbf{z} \leftarrow \text{Non-convex Solver}(Q) // \text{Phase II on } Q$ **Output:** argmax{ $f(\mathbf{x}), f(\mathbf{z})$ }

1/4 Guarantee

- Can use existing non-convex solvers to find (approximately) stationary points (used non-convex Frank-Wolfe in the experiments)
- Performs surprisingly good in experiments

Key property for a second algorithm

Lemma: A DR-submodular f is concave along any non-negative direction.

Shrunken Frank-Wolfe: Follow concavity [BLKB '17]

Shrunken FW

Choose initializer $\mathbf{x} \in \mathcal{P}$ In each iteration **do**:

Shrunken operator

$$\mathbf{d} \leftarrow \operatorname{argmax}_{\mathbf{v} \in \mathcal{P}, \mathbf{v} \leq \overline{\mathbf{u}} - \mathbf{x}} \langle \mathbf{v}, \nabla f(\mathbf{x}) \rangle$$
$$\mathbf{x} \leftarrow \mathbf{x} + \gamma \mathbf{d}$$

Return **x**

Theorem:
$$f(\mathbf{x}^{K}) \ge \frac{1}{e} f(\mathbf{x}^{*}) - \frac{LD^{2}}{2K}$$

 $f(\mathbf{x}^{*}) \ge \frac{1}{e} f(\mathbf{x}^{*}) - \frac{LD^{2}}{2K}$

 $\max_{\mathbf{x}\in\mathcal{P}}f(\mathbf{x})$

Can make **d** to be a positive direction because:

- **d** is from \mathcal{P}
- can always move \mathcal{P} to the positive orthant without changing structure of the objective (since \mathcal{P} is down-closed)

Algorithm validation through the posterior agreement (PA) framework

Resulted in continuous DR-submodular maximization problems [BBK '19]

Motivation of posterior agreement

Ground set \mathcal{V} : *n* products, *n* usually large

Which subset $S \subseteq \mathcal{V}$ to recommend?

F(S): a parameterized submodular utility function e.g., a deep submodular neural net [Bilmes et al. '17]

Noisy training data *D*: a collection of chosen subsets by the users

- Learning: learn parameters and hyperparameters (architecture, stopping time & learning rate of SGD etc) of F(S)
- Inference: sample a subset from the distribution induced by F(S)

How to conduct inference and hyperparameter selection with noisy observations?

→ Can be achieved through the posterior agreement (PA) framework

Two-instance scenario, PA distribution and PA objective [Buhmann '10, BGB '15, BGB '16]

	hyperparame choice	posteriors		
two noisy datasets		submodular utility function	probabilist models [Dj	
D'	\rightarrow	F(S; D')	\rightarrow	p(S D') of
$D^{\prime\prime}$	\rightarrow	F(S; D'')	\rightarrow	p(S D'')

posteriors described by probabilistic log-submodular models [Djolonga et al. '14]

$$p(S|D') \propto \exp(F(S;D'))$$

 $p(S|D'') \propto \exp(F(S;D''))$

PA distribution:

 $p^{\text{PA}}(S) \propto p(S|D')p(S|D'') \propto \exp[F(S;D') + (F(S;D'')]$

used for inference

PA objective: measure the agreement between the two posteriors. It is verified in an information-theoretic manner [BGB '16].

used for hyperparameter validation

Inference via mean field approximation [BBK '19]

Inference: sample from the PA distribution $p^{PA}(S) \rightarrow$ intractable

Mean field inference: approximate $p^{PA}(S)$ by a factorized surrogate distribution: $q(S|\mathbf{x}) := \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j), \mathbf{x} \in [0, 1]^n$, then sample from $q(S|\mathbf{x})$

$$\log \mathbb{Z}^{PA} = \log \sum_{S} \exp[F(S; D') + (F(S; D'')]$$
(PA Evidence)

$$\geq \mathbb{E}_{q(S|\mathbf{X})}[F(S; D')] + \mathbb{E}_{q(S|\mathbf{X})}[F(S; D'')] + \sum_{i} H(x_{i}) =: f(\mathbf{X})$$
(PA-ELBO)

Provable mean field inference [BBK '19]

 $\mathbb{E}_{q(S|\mathbf{X})}[F(S;D')] + \mathbb{E}_{q(S|\mathbf{X})}[F(S;D'')] + \sum_{i} H(x_i) =: f(\mathbf{X}) \quad \text{(PA-ELBO)}$

Finding a good lower bound \rightarrow

max (PA-ELBO) w.r.t. $q(S|\mathbf{x})$

Box constrained continuous DR-submodular maximization problem:

 $\max f(\mathbf{x})$, s.t. $\mathbf{x} \in [0, 1]^n$

Highly non-convex, however, Continuous DR-Submodular wrt X

Proposed a tight ½ approximation algorithm: DR-DoubleGreedy

Validation of hyperparameters [BBK '19]

Given a hyperparameter choice, PA objective measures how good the choice is.

PA objective is intractable \rightarrow mean field inference provides lower bound

(PA-ELBO) in last slide, provable algorithm from continuous DR-submodular maximization applies

Experiments

Revenue maximization

Revenue maximization: The details

 W_{ij} : influence strength of *i* to *j*

Can be viewed as a variant of the Influenceand-Exploit strategy of [Hartline et al. '08].

Influence stage: giving user $i x_i$ units of products for free, he becomes an advocate with probability (independently from others) $1 - q^{x_i}, q \in (0,1)$ is a constant

Exploit stage: If a set S of users advocate the product, the resulted revenue is R(S). The expected revenue is:

Results on "Ego Facebook" graph (4039 users), from the SNAP dataset

Thanks for your attention!

Backup pages

Outlook

- Sampling methods for estimating the PA criterion
- Incorporate continuous submodularity as a prior knowledge into modern NN architecture
 - better generalization
 - more interpretable
- Explore submodularity over arbitrary conic lattices

Local-Global relation: Monotone setting

Strong relation between locally stationary points & global optimum [BLKB '17]

Lemma: for any two points \mathbf{x} , \mathbf{y} , it holds, $(\mathbf{y} - \mathbf{x})^{\mathrm{T}} \nabla f(\mathbf{x}) \ge f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y}) - 2 f(\mathbf{x})$

Let **x** be a stationary point in $\mathcal{P} \rightarrow \text{e.g.}, \nabla f(\mathbf{x}) = \mathbf{0}$

taking $\mathbf{y} = \mathbf{x}^* \rightarrow$

 $2 f(\mathbf{x}) \ge f(\mathbf{x} \lor \mathbf{x}^*) + f(\mathbf{x} \land \mathbf{x}^*)$ $\ge f(\mathbf{x}^*) + f(\mathbf{x} \land \mathbf{x}^*) \quad \mathbf{x} \lor \mathbf{x}^* \gtrsim \mathbf{x}^*$ $\ge f(\mathbf{x}^*) \qquad f(\mathbf{x} \land \mathbf{x}^*) \ge 0$

 $\max_{\mathbf{x}\in\mathcal{D}}f(\mathbf{x})$

$$f(\mathbf{x}) \geq \frac{1}{2}f(\mathbf{x}^*)$$

Generalized from submodularity of set functions

Ground set $\mathcal{V} = \{1, ..., n\}$ $F(X): 2^{\mathcal{V}} \mapsto \mathbb{R}_+$: utility, coverage, ...

 $\forall X, Y \subseteq \mathcal{V}, \quad F(X) + F(Y) \geq F(X \cup Y) + F(X \cap Y)$ (1,1,1) Equivalently, using binary vectors (0,0,0) $\forall \mathbf{x}, \mathbf{y} \in \{0,1\}^n, F(\mathbf{x}) + F(\mathbf{y}) \geq F(\mathbf{x} \lor \mathbf{y}) + F(\mathbf{x} \land \mathbf{y})$ V: coordinate-wise max. (JOIN) ∧: coordinate-wise min. (MEET) $\forall \mathbf{x}, \mathbf{y} \in [a, b]^n, f(\mathbf{x}) + f(\mathbf{y}) \geq f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y})$ Continuous submodularity (can be generalized to arbitrary lattice [Topkis '78]) Supermodularity: f is supermodular iff -f is submodular

MAP inference for DPPs [Gillenwater et al. '12]

DPP: determinantal point processes

- a distribution over subsets that favors diversity among items inside the subset
- originates from statistical physics [Macchi '75]

Softmax Extension for MAP inference:

SE(**x**) = log det[diag(**x**)(**L** - **I**) + **I**] **x** \in [0, 1]ⁿ ($x_i \rightarrow$ prob. of selecting item *i*)

L: $n \times n$ kernel matrix, \mathbf{L}_{ij} : similarity between i, jI: identity matrix, diag(\mathbf{x}): diagonal matrix

Proved continuous DR-submodularity \rightarrow improved algorithm in both theory and practice

Task: Select a subset of points that are diverse

Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

Experiments on the Softmax Extension: Synthetic

 $SE(x) = \log \det[\operatorname{diag}(x)(L - I) + I]$ Constraint: polytope

Lessons:

- Sometimes worst-case analysis does not reflect practical performance
- More properties of $\ensuremath{\text{SE}}(x)$ can be explored to explain practical performance

Real-world experiment: Matched summarization with DPPs [Gillenwater et al. '12]

Given statements made by A & B, select a set of pairs s.t. the two items *within* a pair are *similar*, but the set of pairs is *diverse*.

A1: No tax on interest, dividends, or capital gains. [tax]
A2: We're not going to have Sharia law applied in U.S. courts.
A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
A4: We're spending more on foreign aid than we ought to. [foreign aid]
A5: If you think what we did in Massachusetts and what President Obama
did are the same, boy, take a closer look. [Obamacare]

B1: I don't believe in a zero capital gains tax rate. [tax]
B2: Manufacture in America, you aren't going to pay any taxes. [tax]
B3: Zeroing out foreign aid ... that's absolutely the wrong course. [foreign aid]
B4: I voted against ethanol subsidies my entire time in Congress.
B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Real-world experiment: Matched summarization with DPPs [Gillenwater et al. '12]

Given statements made by A & B, select a set of pairs s.t. the two items *within* a pair are *similar*, but the set of pairs are *diverse*.

A1: No tax on interest, dividends, or capital gains. [tax]

A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare] A4: We're spending more on foreign aid than we ought to. [foreign aid]

Can compare opinions of politicians on same topics

B1: I don't believe in a zero capital gains tax rate. [tax]

B3: Zeroing out foreign aid ... that's absolutely the wrong course. [foreign aid]

B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Can be solved using DPP MAP inference with polytope constraints

Results on max. Softmax Extension SE(x)

For Two-PHASE FW, objectives of the selected phase were plotted.

