ETHzürich

Provable Non-Convex Optimization and Algorithm Validation via Submodularity

Yatao Bian

ETH Zürich
November 20, 2019

Why do we need continuous submodularity?

Motivations and applications

Motivation 1: Prior knowledge for modeling

Continuous DR-submodularity captures "Diminishing Returns (DR)" phenomenon

Motivation 2: A non-convex structure with provable optimization

Quadratic Program (QP):

$$
\begin{aligned}
& f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x}+\mathbf{h}^{\mathrm{T}} \mathbf{x}+c, \mathbf{H} \text { is symmetric } \\
& \left.\nabla^{2} f=\mathbf{H}, \mathbf{H}=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right], \text { eigenvalues: } \begin{array}{c}
1 \\
-3
\end{array}\right]
\end{aligned}
$$

Non-convex/non-concave $\quad \rightarrow \quad$ Continuous submodular $;$

It arises in:

Lovasz/Multilinear extensions of submodular set functions [Lovasz '83][Calinescu et al. '07]

DPP MAP inference [Gillenwater et al. '12]
[BLKB '17]
Social network mining [BMBK '17]
 Risk-sensitive submodular optimization [Wilder '17]

Robust budget allocation
[Staib et al. '17]

Mean field inference for the posterior agreement
(PA) distribution
[BBK '19]

Product recommendation

Amazon baby registries. Left: furniture, right: toys

> Budget allocation

Revenue maximization

Image summarization

Revenue maximization with continuous assignments

[Hartline et al. '08, BMBK '17]

Task: advertise an innovation/product based on a social connection graph \rightarrow max. expected revenue

Given: connection graph

- Nodes: all users (all people on FB)
- Edges: influence strength between users

Viral marketing: give some users a certain amount of free products, to trigger further adoptions
$\mathbf{x} \in \mathbb{R}_{+}^{n}$: free trial time for n users
How to model expected revenue: $f(\mathbf{x})$?

Revenue $f(\mathbf{x})$ satisfies DR property:

How to characterize continuous submodularity?

Definitions and characterizations

Three orders of characterizations [BMBK '17]

coordinate-wise less equal
antitone mapping: $\mathbf{x} \lesssim \mathbf{y}$ implies $\nabla f(\mathbf{x}) \gtrsim \nabla f(\mathbf{y})$

	Continuous submodular f	Convex $g, \lambda \in[0,1]$
$0^{\text {th }}$ order	$f(\mathbf{x})+f(\mathbf{y}) \geq f(\mathbf{x} \vee \mathbf{y})+f(\mathbf{x} \wedge \mathbf{y})$	$\begin{aligned} & \lambda g(\mathbf{x})+(1-\lambda) g(\mathbf{y}) \\ & \geq g(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \\ & \hline \end{aligned}$
$1^{\text {st }}$ order	$\nabla f(\cdot)$: weak antitone mapping	$g(\mathbf{y}) \geq g(\mathrm{x})+\langle\nabla \mathrm{g}(\mathrm{x}), \mathrm{y}-\mathrm{x}\rangle$
$2^{\text {nd }}$ order	$\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \leq 0, \forall i \neq j$	$\nabla^{2} g(\mathbf{x}) \succcurlyeq 0$ (PSD)

not care	≤ 0	≤ 0	≤ 0
≤ 0	not care	≤ 0	≤ 0
≤ 0	≤ 0	not care	≤ 0
≤ 0	≤ 0	≤ 0	not care

Hessian
V : coordinate-wise max.
\wedge : coordinate-wise min.

\mathbf{x}	\mathbf{y}		
2			
0			
4	1 2		
			2
:---:			
2			
4		1	
:---:			
0			

Continuous submodularity: Repulsion among different dimensions

$$
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \leq 0, \forall i \neq j
$$

not care	≤ 0	≤ 0	≤ 0
≤ 0	not care	≤ 0	≤ 0
≤ 0	≤ 0	not care	≤ 0
≤ 0	≤ 0	≤ 0	not care
Hessian			

Arbitrary behavior along a single coordinate
Often, objectives have some structure along a single coordinate

Submodularity + Concavity along any single coordinate
= Continuous DR-submodularity

A 2-D Softmax extension [Gillenwater et al. '12]

Two classes of continuous submodular functions [вмВК ‘17]

DR-
submodular

Submodular

How to maximize continuous DR-submodular functions?

Provable algorithms

DR-submodular maximization: Setup \& hardness

$\max f(\mathbf{x})$ $\mathbf{x} \in \mathcal{P}$

\mathcal{P} is convex
\& down-closed:

Hardness \& Inapproximability: The above problem is NP-hard. When \mathcal{P} is a unit hypercube $\left(\mathcal{P}=[0,1]^{\mathrm{n}}\right)$, there is no poly. time $(1 / 2+\varepsilon)$-approximation algorithm for any $\varepsilon>0$ unless $R P=N P$.
$1 / 2$-approximation: finding a solution \mathbf{x} s.t. $f(\mathbf{x}) \geq \frac{1}{2} f\left(\mathbf{x}^{*}\right)$

A summary of our theoretical results

Mathematical characterizations of submodularity over integer \& continuous domains [BMBK '17]

$$
\mathbf{a} \leq \mathbf{b} \rightarrow f(\mathbf{a}) \leq f(\mathbf{b})
$$

Monotone DR-submodular max. with down-closed convex constraints [BMBK '17]

Non-monotone DR-submodular max. with box constraints [BBK '19]

Non-monotone DR-submodular max. with down-closed convex constraints
[BLKB '17]
$0^{\text {th }}$ order, $1^{\text {st }}$ order, $2^{\text {nd }}$ order, antitone gradient etc

- Optimal algorithm: A Frank-Wolfe Variant
- Inapproximability: $1 / 2$
- Optimal algorithm: DR-DoubleGreedy
- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe, 1/e guarantee

Non-monotone DR-submodular max. with down-closed convex constraints
[BLKB '17]

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe, 1/e guarantee

Local-Global relation [BLKB '17]

- Let \mathbf{x} be a stationary point in \mathcal{P}
$-\mathcal{Q}:=\mathcal{P} \cap\{\mathbf{y} \mid \mathbf{y} \lesssim \overline{\mathbf{u}}-\mathbf{x}\}$
- Let z be the a stationary point in Q

Theorem:

$\max \{f(\mathbf{x}), f(\mathbf{z})\} \geq \frac{1}{4} f\left(\mathbf{x}^{*}\right)$

Can be generalized to approximately stationary points

$\max _{\mathbf{x} \in \mathcal{P}} f(\mathbf{x})$

Local-Global relation \rightarrow Two-Phase algorithm

Two-Phase algorithm

$\mathbf{x} \leftarrow$ Non-convex $\operatorname{Solver}(\mathcal{P}) / /$ Phase I on \mathcal{P}
$\mathcal{Q} \leftarrow \mathcal{P} \cap\{\mathbf{y} \mid \mathbf{y} \leqq \overline{\mathbf{u}}-\mathbf{x}\}$
$\mathbf{z} \leftarrow$ Non-convex Solver (Q) // Phase II on \mathcal{Q} Output: $\operatorname{argmax}\{f(\mathbf{x}), f(\mathbf{z})\}$

1/4 Guarantee

- Can use existing non-convex solvers to find (approximately) stationary points (used non-convex Frank-Wolfe in the experiments)
- Performs surprisingly good in experiments

Key property for a second algorithm

Cross-section in a positive direction

Lemma: A DR-submodular f is concave along any non-negative direction.

Shrunken Frank-Wolfe: Follow concavity [BLKB '17]

Shrunken FW

Choose initializer $\mathbf{x} \in \mathcal{P}$
In each iteration do: Shrunken operator

$$
\begin{aligned}
& \mathbf{d} \leftarrow \operatorname{argmax}_{\mathbf{v} \in \mathcal{P}, \mathrm{v} \leqslant \overline{\mathrm{u}}-\mathrm{x}}\langle\mathbf{v}, \nabla f(\mathbf{x})\rangle \\
& \mathbf{x} \leftarrow \mathbf{x}+\gamma \mathrm{d}
\end{aligned}
$$

Return \mathbf{x}
-

$$
\text { Theorem: } f\left(\mathrm{x}^{K}\right) \geq \frac{1}{e} f\left(\mathrm{x}^{*}\right)-\frac{L D^{2}}{2 K}
$$

L: Lipschitz gradient, D : diameter of \mathcal{P}

Can make d to be a positive direction because:

- \quad d is from \mathcal{P}
- can always move \mathcal{P} to the positive orthant without changing structure of the objective (since \mathcal{P} is down-closed)

Algorithm validation through the posterior agreement (PA) framework

Resulted in continuous DR-submodular
maximization problems [BBK '19]

Motivation of posterior agreement

Product recommendation

Ground set $\mathcal{V}: n$ products, n usually large Which subset $S \subseteq \mathcal{V}$ to recommend?
$F(S)$: a parameterized submodular utility function e.g., a deep submodular neural net [Bilmes et al. '17]

Noisy training data D : a collection of chosen subsets by the users

- Learning: learn parameters and hyperparameters (architecture, stopping time \& learning rate of SGD etc) of $F(S)$
- Inference: sample a subset from the distribution induced by $F(S)$

How to conduct inference and hyperparameter selection with noisy observations?
\rightarrow Can be achieved through the posterior agreement (PA) framework

Two-instance scenario, PA distribution and PA objective [Buhmann '10, BGB '15, BGB '16]

hyperparameter
choice

two noisy datasets		submodular utility functions		probabilistic log-submodular models [Djolonga et al. '14]
D^{\prime}	\rightarrow	$F\left(S ; D^{\prime}\right)$	\rightarrow	$p\left(S \mid D^{\prime}\right) \propto \exp \left(F\left(S ; D^{\prime}\right)\right)$
$D^{\prime \prime}$	\rightarrow	$F\left(S ; D^{\prime \prime}\right)$	\rightarrow	$p\left(S \mid D^{\prime \prime}\right) \propto \exp \left(F\left(S ; D^{\prime \prime}\right)\right)$

PA distribution:
$p^{\mathrm{PA}}(S) \propto p\left(S \mid D^{\prime}\right) p\left(S \mid D^{\prime \prime}\right) \propto \exp \left[F\left(S ; D^{\prime}\right)+\left(F\left(S ; D^{\prime \prime}\right)\right]\right.$ used for inference

PA objective: measure the agreement between the two posteriors. It is verified in an information-theoretic manner [BGB '16].

Inference via mean field approximation [BBK '19]

Inference: sample from the PA distribution $p^{\mathrm{PA}}(S) \rightarrow$ intractable

Mean field inference: approximate $p^{\mathrm{PA}}(S)$ by a factorized surrogate distribution: $q(S \mid \mathbf{x}):=\prod_{i \in S} x_{i} \prod_{j \notin S}\left(1-x_{j}\right), \mathbf{x} \in[0,1]^{n}$, then sample from $q(S \mid \mathbf{x})$

$$
\begin{aligned}
& \log \mathrm{Z}^{\mathrm{PA}}=\log \sum_{s} \exp \left[F\left(S ; D^{\prime}\right)+\left(F\left(S ; D^{\prime \prime}\right)\right]\right. \\
& \geq \\
& \mathbb{E}_{q(S \mid \mathrm{x})}\left[F\left(S ; D^{\prime}\right)\right]+\mathbb{E}_{q(S \mid \mathrm{x})}\left[F\left(S ; D^{\prime \prime}\right)\right]+\sum_{i} H\left(x_{i}\right)=: f(\mathrm{x}) \\
& \text { (PA-ELBO) }
\end{aligned}
$$

Provable mean field inference
 [BBK '19]

$$
\mathbb{E}_{q(S \mid \mathbf{x})}\left[F\left(S ; D^{\prime}\right)\right]+\mathbb{E}_{q(S \mid \mathbf{x})}\left[F\left(S ; D^{\prime \prime}\right)\right]+\sum_{i} H\left(x_{i}\right)=: f(\mathrm{x}) \quad \text { (PA-ELBO) }
$$

Finding a good lower bound $\rightarrow \quad \max ($ PA-ELBO w.r.t. $q(S \mid \mathbf{x})$

Box constrained continuous
DR-submodular maximization problem:

Highly non-convex, however, Continuous DR-Submodular wrt \mathbf{x} :)

$\max f(\mathbf{x})$, s.t. $\mathbf{x} \in[0,1]^{n}$

Proposed a tight $1 / 2$ approximation algorithm: DR-DoubleGreedy

Validation of hyperparameters [BBK '19]

Given a hyperparameter choice,
PA objective measures how good the choice is.

PA objective is intractable \rightarrow mean field inference provides lower bound

Experiments

Revenue maximization

Revenue maximization: The details

$W_{i j}$: influence strength of i to j
Can be viewed as a variant of the Influence-and-Exploit strategy of [Hartline et al. '08].

Influence stage: giving user $i x_{i}$ units of products for free, he becomes an advocate with probability (independently from others)
$1-q^{x_{i}}, q \in(0,1)$ is a constant
Exploit stage: If a set S of users advocate the product, the resulted revenue is $R(S)$. The expected revenue is:
$f(\mathbf{x})=\mathbb{E}_{S}[R(S)] \quad \underset{i}{=} \quad \sum_{i \neq j} W_{i j}\left(1-q^{x_{i}}\right) q^{x_{j}} \quad \begin{aligned} & \text { Non-monotone } \\ & \text { DR-submodular }\end{aligned}$
For simplicity, let $R(S)$ be the graph cut value of S

Results on "Ego Facebook" graph (4039 users), from the SNAP dataset

Thanks for your attention!

Backup pages

Outlook

- Sampling methods for estimating the PA criterion
- Incorporate continuous submodularity as a prior knowledge into modern NN architecture
- better generalization
- more interpretable
- Explore submodularity over arbitrary conic lattices

Local-Global relation: Monotone setting

Strong relation between locally stationary points \& global optimum [BLKB '17]
Lemma: for any two points \mathbf{x}, \mathbf{y}, it holds,
$(\mathbf{y}-\mathbf{x})^{\mathrm{T}} \nabla f(\mathbf{x}) \geq f(\mathbf{x} \vee \mathbf{y})+f(\mathbf{x} \wedge \mathbf{y})-2 f(\mathbf{x})$

Let \mathbf{x} be a stationary point in $\mathcal{P} \rightarrow$ e.g., $\nabla f(\mathbf{x})=\mathbf{0}$
taking $\mathbf{y}=\mathbf{x}^{*} \rightarrow$
$2 f(\mathbf{x}) \geq f\left(\mathbf{x} \vee \mathbf{x}^{*}\right)+f\left(\mathbf{x} \wedge \mathbf{x}^{*}\right)$

$$
\begin{array}{ll}
\geq f\left(\mathbf{x}^{*}\right)+f\left(\mathbf{x} \wedge \mathbf{x}^{*}\right) & \mathrm{x} \vee \mathrm{x}^{*} \gtrsim \mathrm{x}^{*} \\
\geq f\left(\mathbf{x}^{*}\right) & f\left(\mathrm{x} \wedge \mathrm{x}^{*}\right) \geq 0
\end{array}
$$

$$
f(\mathbf{x}) \geq \frac{1}{2} f\left(\mathbf{x}^{*}\right)
$$

```
max (x\in\mathcal{P}
a}\lesssim\mathbf{b}->f(\mathbf{a})\leqf(\mathbf{b}
```


Generalized from submodularity of set functions

$$
\text { Ground set } \mathcal{V}=\{1, \ldots, n\} \quad F(X): 2^{\mathcal{V}} \mapsto \mathbb{R}_{+}: \text {utility, coverage, } \ldots
$$

MAP inference for DPPs [Gillenwater et al. '12]

DPP: determinantal point processes

- a distribution over subsets that favors diversity among items inside the subset
- originates from statistical physics [Macchi '75]

Task: Select a subset of points that are diverse
irag iraqi killed baghdad arab marines deaths forces social tax security democrats rove accounts
owen nominees senate democrats judicial flibusters
israel palestinian iraqi israeli gaza abbas baghdad
pope vatican church parkinson
Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17
Softmax Extension for MAP inference:
$\operatorname{SE}(\mathbf{x})=\log \operatorname{det}[\operatorname{diag}(\mathbf{x})(\mathrm{L}-\mathbf{I})+\mathbf{I}]$
$\mathbf{x} \in[0,1]^{n} \quad\left(x_{i} \rightarrow\right.$ prob. of selecting item $\left.i\right)$
L: $n \times n$ kernel matrix, $\mathbb{L}_{i j}:$ similarity between i, j
I: identity matrix, $\operatorname{diag}(\mathbf{x})$: diagonal matrix

Proved continuous DR-submodularity \rightarrow improved algorithm in both theory and practice

Independent sample

Experiments on the Softmax Extension: Synthetic

$\mathbf{S E}(\mathbf{x})=\log \operatorname{det}[\operatorname{diag}(\mathbf{x})(\mathrm{L}-\mathbf{I})+\mathbf{I}] \quad$ Constraint: polytope

- Both better than Projected Gradient
- Two-PHASE FW ($\frac{1}{4}$) performs better than
Shrunken FW $\left(\frac{1}{e}\right)$

Lessons:

- Sometimes worst-case analysis does not reflect practical performance
- More properties of $\operatorname{SE}(\mathbf{x})$ can be explored to explain practical performance

Real-world experiment: Matched summarization with DPPs [Gillenwater et al. '12]

Given statements made by A \& B, select a set of pairs s.t. the two items within a pair are similar, but the set of pairs is diverse.

A1: No tax on interest, dividends, or capital gains. [tax]
A2: We're not going to have Sharia law applied in U.S. courts.
A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
A4: We're spending more on foreign aid than we ought to. [foreign aid]
A5: If you think what we did in Massachusetts and what President Obama did are the same, boy, take a closer look. [Obamacare]

B1: I don't believe in a zero capital gains tax rate. [tax]
B2: Manufacture in America, you aren't going to pay any taxes. [tax]
B3: Zeroing out foreign aid ... that's absolutely the wrong course. [foreign aid]
B4: I voted against ethanol subsidies my entire time in Congress.
B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Real-world experiment: Matched summarization with DPPs [Gillenwater et al. '12]

Given statements made by A \& B, select a set of pairs s.t. the two items within a pair are similar, but the set of pairs are diverse.

A1: No tax on interest, dividends, or capital gains. [tax]
A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
A4: We're spending more on foreign aid than we ought to. [foreign aid]
Can compare opinions of
politicians on same topics
B1: I don't believe in a zero capital gains tax rate. [tax]
B3: Zeroing out foreign aid ... that's absolutely the wrong course. [foreign aid]
B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Can be solved using DPP MAP inference with polytope constraints

Results on max. Softmax Extension SE(x)

For TWO-PHASE FW, objectives of the selected phase were plotted.

